8,527 research outputs found

    First-order transition in small-world networks

    Full text link
    The small-world transition is a first-order transition at zero density pp of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by ΔpLd\Delta p \sim L^{-d}. Equivalently a ``persistence size'' Lp1/dL^* \sim p^{-1/d} can be defined in connection with finite-size effects. Assuming LpτL^* \sim p^{-\tau}, simple rescaling arguments imply that τ=1/d\tau=1/d. We confirm this result by extensive numerical simulation in one to four dimensions, and argue that τ=1/d\tau=1/d implies that this transition is first-order.Comment: 4 pages, 3 figures, To appear in Europhysics Letter

    Biased random satisfiability problems: From easy to hard instances

    Full text link
    In this paper we study biased random K-SAT problems in which each logical variable is negated with probability pp. This generalization provides us a crossover from easy to hard problems and would help us in a better understanding of the typical complexity of random K-SAT problems. The exact solution of 1-SAT case is given. The critical point of K-SAT problems and results of replica method are derived in the replica symmetry framework. It is found that in this approximation αcp(K1)\alpha_c \propto p^{-(K-1)} for p0p\to 0. Solving numerically the survey propagation equations for K=3 we find that for p<p0.17p<p^* \sim 0.17 there is no replica symmetry breaking and still the SAT-UNSAT transition is discontinuous.Comment: 17 pages, 8 figure

    Hamilton-Jacobi method for Domain Walls and Cosmologies

    Full text link
    We use Hamiltonian methods to study curved domain walls and cosmologies. This leads naturally to first order equations for all domain walls and cosmologies foliated by slices of maximal symmetry. For Minkowski and AdS-sliced domain walls (flat and closed FLRW cosmologies) we recover a recent result concerning their (pseudo)supersymmetry. We show how domain-wall stability is consistent with the instability of adS vacua that violate the Breitenlohner-Freedman bound. We also explore the relationship to Hamilton-Jacobi theory and compute the wave-function of a 3-dimensional closed universe evolving towards de Sitter spacetime.Comment: 18 pages; v2: typos corrected, one ref added, version to appear in PR

    Positivity of energy for asymptotically locally AdS spacetimes

    Full text link
    We derive necessary conditions for the spinorial Witten-Nester energy to be well-defined for asymptotically locally AdS spacetimes. We find that the conformal boundary should admit a spinor satisfying certain differential conditions and in odd dimensions the boundary metric should be conformally Einstein. We show that these conditions are satisfied by asymptotically AdS spacetimes. The gravitational energy (obtained using the holographic stress energy tensor) and the spinorial energy are equal in even dimensions and differ by a bounded quantity related to the conformal anomaly in odd dimensions.Comment: 36 pages, 1 figure; minor corrections, JHEP versio

    Settling Some Open Problems on 2-Player Symmetric Nash Equilibria

    Full text link
    Over the years, researchers have studied the complexity of several decision versions of Nash equilibrium in (symmetric) two-player games (bimatrix games). To the best of our knowledge, the last remaining open problem of this sort is the following; it was stated by Papadimitriou in 2007: find a non-symmetric Nash equilibrium (NE) in a symmetric game. We show that this problem is NP-complete and the problem of counting the number of non-symmetric NE in a symmetric game is #P-complete. In 2005, Kannan and Theobald defined the "rank of a bimatrix game" represented by matrices (A, B) to be rank(A+B) and asked whether a NE can be computed in rank 1 games in polynomial time. Observe that the rank 0 case is precisely the zero sum case, for which a polynomial time algorithm follows from von Neumann's reduction of such games to linear programming. In 2011, Adsul et. al. obtained an algorithm for rank 1 games; however, it does not solve the case of symmetric rank 1 games. We resolve this problem

    The computational difficulty of finding MPS ground states

    Get PDF
    We determine the computational difficulty of finding ground states of one-dimensional (1D) Hamiltonians which are known to be Matrix Product States (MPS). To this end, we construct a class of 1D frustration free Hamiltonians with unique MPS ground states and a polynomial gap above, for which finding the ground state is at least as hard as factoring. By lifting the requirement of a unique ground state, we obtain a class for which finding the ground state solves an NP-complete problem. Therefore, for these Hamiltonians it is not even possible to certify that the ground state has been found. Our results thus imply that in order to prove convergence of variational methods over MPS, as the Density Matrix Renormalization Group, one has to put more requirements than just MPS ground states and a polynomial spectral gap.Comment: 5 pages. v2: accepted version, Journal-Ref adde

    Bridging the gap between neurons and cognition through assemblies of neurons

    Get PDF
    During recent decades, our understanding of the brain has advanced dramatically at both the cellular and molecular levels and at the cognitive neurofunctional level; however, a huge gap remains between the microlevel of physiology and the macrolevel of cognition. We propose that computational models based on assemblies of neurons can serve as a blueprint for bridging these two scales. We discuss recently developed computational models of assemblies that have been demonstrated to mediate higher cognitive functions such as the processing of simple sentences, to be realistically realizable by neural activity, and to possess general computational power
    corecore